아두이노로 제어하기 좋은 로봇을 찾아오다 얼마전 드디어 쓸만한 녀석을 발견했습니다.

바로 무선제어 6족보행 로봇이란 제품입니다.





6족 보행로봇으로 전진,후진,좌회전,우회전이 가능하며 제공되는 적외선 리모컨을 통해 무선 조정이 가능합니다.
여러대의 로봇을 동시에 조정할 수 있도록 점퍼세팅으로 총 6대의 로봇을 동시에 조정할 수 있게 제작되었습니다.
조립도 간단하고 접착제같은건 사용하지 않아 신속하고 깔끔하게 제작이 가능합니다.

왜 좋은가?

1. 저렴한 가격
2. 손쉬운 제작 ( 8세이상 조립가능, 납땜불필요)
3. 손쉬운 아두이노 연동 가능( 전선 결합 불필요, 적외선 통신으로 제어)


조립시 필요한 것:
1.5V 알카리인 건전지 4개( 조정기용 2개, 로봇본체용 2개,  1.2V 충전지로도 잘 작동됩니다.)
스크류 드라이버

아두이노로 제어할 경우 필요한 재료:
 아두이노, IRED(적외선 LED) 1개,  저항 1개
(5미터 이상의 장거리 제어를 원하면 트랜지스터 1개, 저항 1개가 추가로 필요합니다.  관련글 링크 참고)


동영상1. 로봇 기본동작 보기

리모컨 제어로 전진, 후진, 좌회전, 우회전이 가능합니다.


아두이노로 제어하기

1. 하드웨어 준비
적외선 리모컨 신호를 아두이노 디지털 출력을 통해 출력하면됩니다.  이를 위해서 IRED(적외선LED) 1개와 저항 1개가 전부입니다.   원거리에서 제어하려면 트랜지스터를 사용해야 합니다.  연결방법은 일반 LED와 동일하게 저항1개와 함께 직렬 연결해주시면 됩니다.  본 예제에서는 PWM출력을 지원하는 아두이노 디지털 3번핀을 사용합니다.

리모콘 신호 전송을 위해 아두이노에 IRED 연결


IRED연결은 일반 LED 연결과 유사합니다.



2. 라이브러리 준비
적외선 리모컨의 역활을 아두이노가 대신하려면 여러분이 직접 38KHz의 캐리어 주파수에 수신기의 코드부호를 실어서 출력해주면 됩니다.  하지만 많은분들에게 쉽지 않은 도전과제이므로 천재적이면서 친절하기까지 하신 분들이 미리 만들어둔 라이브러리를 활용하여 비교적 손쉽게 아두이노로 리모컨 신호를 발신할 수 있습니다. 

아래의 링크에 가셔서 해당 라이브러리를 아두이노 스케치 library 폴더안에 복사하여 라이브러리 설치를 완료합니다.


위에서 준비해놓은 라이브러리는  RC5, SONY, NEC 코드 등의 송신 및 수신을 위한 기능이 제공되며 여기서는 NEC코드 발신 함수만 사용하면 됩니다. 리모컨 신호를 이용해 가전기기를 제어하는 것에 대해 일전에 소개해 드린적이 있는데요  이번에도 마찬가지로 코드부호를 스캔하여 해독한 결과 이 로봇도 NEC코드와 유사한 전송방식을 사용하는것을 알게되었습니다.
차이점은 데이타 전송폭이 짧다는 점과 반복표시용 코드를 사용하지 않는다는 것입니다. 

하지만 로봇제어를 위해 복잡한 내용은 모르셔도 상관 없습니다.  단지, 아래와 같은 함수 하나만 사용하기 때문입니다.


  irsend.sendNEC( codedata , nbits );   // codedata에 수신기용 코드값과   nbits에 코드값의 비트 수를 적어주면 됩니다.

위와 같은 함수로 해당코드값을 전송하면,  아두이노의경우 디지탈 3번핀에 해당되는 코드신호가 출력되고 이곳에 연결된 IRED를 통해 빛신호로 변환되어 출력되고  로봇에 내장된 적외선 수신기에서 해당 코드를 수신한뒤 대응되는 모터의 작동이 이뤄지게 되는 것입니다.


아래의 소스는 1초에 한번씩 전진, 후진, 좌회전, 우회전 신호를 발신하는 예제입니다.


#include <IRremote.h>

IRsend irsend;  

void setup()
{
// 특별한 초기화 설정이 불필요합니다.
}

void loop() {
   irsend.sendNEC( 0xc5000000, 8); //전진
   delay(1000);
   irsend.sendNEC( 0x45000000, 8); //후진
   delay(1000);
   irsend.sendNEC( 0x25000000, 8); //좌회전
   delay(1000);
   irsend.sendNEC( 0x85000000, 8); //우회전
   delay(1000);
  
}


위의 소스는 1초에 한번씩만 코드를 발송하므로 지속적으로 작동상태가 유지되지 않습니다. 따라서 만약 전진을 지속적으로 하려면 1초에 수회 정도 전진에 해당되는 코드를 반복하여 전송해야합니다. 


동영상2. 위 소스로 로봇 제어되는 장면

보통 이동형 로봇을 제작시 아두이노같은 마이크로콘트롤러 보드에 모터 구동 회로를 장착하고 모터 2개를 제어할 경우 방향제어를 위해 최소 4개의 전선을 연결하여 제어하게 됩니다. 이에 반해 본 로봇킷의 경우 모터 회로 구현이 이미 되어있는데다 전선의 연결이 불필요하고 빛으로 연결되어 있으므로 비용도 절감되고 제어도 간단해 질 수 있으므로 기초 이동형 로봇 제어 학습시 효과적으로 응용할 수 있는 방법으로 판단됩니다.  (물론 전용 모터드라이버 연결법이 더 다양한 제어가 가능합니다. 가령 속도조절이 가능함)

거리센서 등을 통해 주변 물체를 감지하고 회피하는 로봇의 제작이나  전파(Zigbee, Bluetooth, Wifi 등 활용)를 통한 무선통신으로 신호를 수신 받고 이를 광통신으로 변환하여 원격제어되는 로봇의 구현도 가능합니다.

게다가 수신모듈+모터드라이버 역활을 하는 제어기만 활용할 수도  있습니다.


사진. 리모컨 수신기 및 모터구동 드라이버 보드: 
좌측에 전원연결(2핀)부, 우측에 모터2개 연결부(4핀), 상부에 ON/OFF스위치,  하부에 리모컨 채널 조정용 헤더핀(6핀)이 있으며 가운데에 IR수광모듈이 보입니다.


기타.  작동중 오동작이 계속되면 건전지를 교체해 보시기 바랍니다.  모터 구동시 전력소모가 큰 편이므로 배터리 소모가 빨리 됩니다.


관련 제품 링크

 무선제어 6족보행 로봇

 아두이노 UNO

 적외선 무선통신킷



내용추가
2011.July.26 
아래의 관련글 링크에 리모콘 신호 송수신 회로와  PC에서 키보드 입력으로 로봇을 제어하는 소스 예제를 포함한 글을 새로 등록하였습니다. 참고하세요


관련글 링크

 .IR무선 리모콘 송수신 회로로 로봇 제어하기



로보밥 아두이노 튜토리얼(Robobob Arduino Tutorial) 첫번째 이야기



RT1. 아두이노 설치하고 LED Blink 깜빡이 프로그래밍 하기


다루는 내용
. 아두이노 프로그래밍 환경(스케치) 설치하기
. PC에 아두이노 보드 인식시키기
. 프로그래밍한 뒤 아두이노에 전송하여 작동시키기

개요:
본글은 아두이노를 처음 사용하는분들을 위한 안내문입니다.
모든 아두이노 보드의 설치작업은 유사하며, 사용되는 USB시리얼 통신용 칩에 따라 드라이버 파일이나 inf설정 파일만 다릅니다. 본 글을 통해 아두이노 프로그래밍 환경인 스케치(Sketch)를 설치하고, 아두이노 보드를 PC에 인식시킨 후 아두이노에 기본 장착된 LED를 제어하는 프로그램을 전송하여 실행시키는 과정까지 다루고 있습니다.
아마도, 마이크로콘트롤러와 프로그래밍에 대해 아무것도 모르시던 분들도 1시간내에 아두이노에 장착된 LED를 제어해보고 그 가능성을 경험해보실 수 있을실 겁니다.

순서
.아두이노 스케치를 다운로드 받아서 설치하기
.아두이노를 PC에 인식시키기
.스케치(아두이노 개발환경)의 실행
.예제 소스 불러오기(Blink; LED깜빡이)
.예제 컴파일 및 아두이노에 전송
.작동 상태 확인

자, 그럼 차근 차근 하나 둘 순서대로 진행해 보겠습니다


1단계. 준비물 확인

준비물

CASE 1 :: 아두이노 보드 자체에 USB시리얼 변환기능이 포함된 제품의 경우
 .아두이노 UNO

, Mega2560

 .USB 케이블 (A to B 타입단자)  
CASE 2 :: 아두이노 FIO, Pro, Pro mini, LilyPad  등(내장 USB시리얼변환기가 없는 경우)
 .아두이노 보드 [

아두이노 리스트

]
 .FTDI USB시리얼 변환기 [

제품선택 가이드

]
 .A to mini-B 타입 USB케이블 [

 

]

아두이노는 Linux , Mac OS, Windows 모두를 지원하며 본 글은 Windows 환경의 경우를 기본으로 소개합니다.


2단계. 아두이노 개발환경 설치하기

그림을 그리듯 프로그래밍도 Sketch 하세요!

아두이노 공식 홈페이지인

Arduino.cc

에 가보시면, 아두이노(Arduino) 소개문이 있습니다.
이를 한 줄로 요약하면, 아두이노란 오픈소스 전자기기 프로토타입 플래폼이라는 얘기인데요, 간단히 말하자면, 전자기기 개발에 사용하는 소프트웨어와 하드웨어가 공개되어 있다는 겁니다.

바로 지금 설치하려는 Sketch(스케치) 프로그램이 아두이노 개발에 사용되는 공개형 개발환경입니다.
무료일 뿐만 아니라 소스코드도 공개되어 있습니다. 아래의 링크에서 최신버전을 다운로드하시기 바랍니다.

http://arduino.cc/en/Main/Software

 

사용하시는 OS용 파일을 선택하여 다운로드 합니다. 본 예제에서는 Windows 를 선택합니다.


다운로드 받은 파일은 zip압축파일이며 이를 원하는 위치에 압축 해제합니다.
(*가령 윈도우의 경우 파일명은 arduino-0022.zip(87MB) 이며 버전이 업그레이드되면 제목의 숫자가 증가됩니다.)

압축을 해제하면 arduino-0022 같은 폴더가 보이며 그안에 arduino.exe 실행 파일이 보입니다.
아두이노 개발환경(스케치)은 설치과정 없이 곧바로 실행할 수 있게 배포되므로 이것으로 설치과정이 완료되었습니다. ^^.
arduino.exe 를 실행하면 아두이노 개발환경이 열립니다. 일단 종료해 둡니다.

3단계. PC에 아두이노 연결하기

UNO와 대다수의 아두이노 보드들은 PC와 연결시 별도의 전원이 없이 작동이 가능합니다.
즉, USB케이블을 통해 시리얼통신 신호를 주고 받는것과 더불어 전원도 공급받게 됩니다.

호환되는 USB케이블로 PC와 아두이노를 연결합니다.
FIO나 Pro mini같은 아두이노의 경우 FTDI USB시리얼 변환보드를 경유해 PC와 연결합니다.
전원 ON상태 표시등(초록색 LED)에 불이 들어옵니다.


4단계. 드라이버 설치하기

아두이노(가령 UNO)와 PC를 케이블로 연결하면, 잠시 후 새장치를 발견하여 드라이버를 설치한다는 메시지가 나오게됩니다.
그리고 몇 초 동안 짱구를 돌리며 열심히 노력하던 우리의 윈도우OS는 결국 자동인식에 실패했다는 메시지를 남기곤 숨어버립니다. (단, 윈도우 환경과 보드 종류에 따라 드라이버를 자동인식하여 설치하는 경우도 있습니다.)

결국 여러분이 직접 드라이버를 골라서 설치해 주셔야하는데요,  많은 분들이 이미 이 작업에 익숙해져 있으실 겁니다. 가령 아래의 순서대로 하시면 됩니다.  (다른방법을 사용하셔도 되며, 드라이버 위치만 참고하시면 됩니다.)

.윈도우 시작 > 제어판 > 장치 관리자("장치 및 프린터" 그룹)  를 엽니다.
.장치리스트에서 "포트"를 선택하면, "Arduino UNO (COMxx)"라는 장치명이 보입니다.
.해당장치를 우측버튼으로 클릭한 뒤 "드라이버 업데이트"를 선택합니다.

.직접 드라이버 검색위치지정을 선택합니다.
UNO와 Mega2560 의 경우:
  > 2단계에서 다운로드 후 압축해제한 arduino-00xx 폴더내에 있는 drivers 폴더를 선택
Pro, Pro mini, FIO, LilyPad등의 FTDI시리얼 보드 사용제품의 경우:
  > drivers폴더안에 있는 FTDI USB Drivers 폴더를 선택

.위도우가 UNO 장치 인식을 완료하게됩니다.

장치 설치가 완료된 이후엔 장치관리자 "포트" 장치 리스트에서 인식된 아두이노 보드의 COM번호를 알아두는게 중요합니다.


4단계 순서대로 다시 보기
(드라이버 설치 과정 캡쳐이미지, WINDOWS 7 기준)
드라이버 설치과정을 아래의 캡쳐된 이미지 순서대로 다시한번 살펴봅니다.


아두이노와 PC를 연결합니다.
가령, UNO + USB Cable + PC USB 포트
가령, Pro mini + FTDI USB 시리얼 변환기 + USB mini Cable + PC USB 포트


윈도우가 장치를 발견하고 드라이버 자동설치를 시도합니다.

 

 

드라이버 자동설치에 실패합니다.

(아두이노 종류와 OS에 따라 자동설치 되는 경우도 있습니다.)

참고로, UNO와 Mega2560의 경우 MAC OS와 Linux에서 자동 인식된다고 합니다.

정상적으로 장치설치가 완료되면 포트(COM & LPT) 리스트에 등록되게 되지만,

정상인식이 되지 않아 장치관리자 "기타장치"에 Arduino UNO란 이름으로 등록되어있습니다.

 

다음의 절차를 통해 장치를 정상 인식시킵니다.

 

장치인식을위해 해당 장치(가령 Arduino UNO)를 우측버튼으로 클릭 후, 드라이버 소프트웨어 업데이트를 선택합니다.

 

자동검색을 하지말고,  수동으로 컴퓨터에있는 드라이버 찾아보기를 선택합니다.

 

찾아보기 버튼을 누르고, 해당 장치드라이버가 있는 폴더를 찾아 지정해줍니다.

 

UNO와 Mega2560의 경우, 2단계에서 설치한 아두이노 프로그램 폴더(arduino-00xx)내에 있는 drivers 폴더를 선택해줍니다.

FIO, LilyPad, Pro, Pro mini등은 drivers폴더안에 있는 FTDI USB Drivers 폴더를 선택해줍니다.

 

*참고사항: UNO와 Mega2560은 dirvers폴더에 들어있는 inf(설정)파일 한개만 있으면 됩니다.

 기타 구형 아두이노들은 FTDI칩을 사용하므로 FTDI칩 인식용 장치드라이버 파일들이 필요합니다.

 

 

보안경고가 나오면 설치 허용을 선택합니다.

 

 

 

 

장치 인식이 완료되었습니다.

 

장치관리자 > 포트 정보를 보면  Arduino UNO(COMxx)와 같이 새로운 COM포트로 등록된 것을 확인할 수 있습니다.

컴퓨터 환경에 따라 COM번호는 다른 번호로 할당될 수 있습니다.

위 과정은, Windows OS 버젼별로 약간의 차이가 있지만 거의 비슷합니다.

자, 이제 아두이노 프로그램 설치와 장치인식이 모두 완료 되었습니다.
이제 본격적으로 프로그래밍을 해보고 아두이노에 전송하여 작동시켜 보도록 합시다!


5단계. 아두이노 개발환경(스케치)을 실행합니다.

2단계에서 설치된 arduino.exe 를 실행합니다.
앞으로 자주 실행을 해야 하므로 단축아이콘을 만들어두면 편리합니다.

심플 담백한 스케치화면

6단계. 아두이노 보드종류 선택하기

'단순 무식한 컴파일러에게 아두이노의 종류를 알려주세요!'

아두이노 보드들이 많은 부분에서 호환성을 갖고 있지만, 구동속도( 8MHz, 16MHz),  전압레벨( 3.3V , 5V), 포트의 수, 프로그래밍 용량등의 차이가 있으므로 개발을 할때 이를 고려해 줘야 합니다. 스케치 개발환경에서 여러분이 사용하는 아두이노의 종류가 무엇인지 자동인식하지 못하므로 직접 보드 종류를 지정해 주는 과정을 꼭 하셔야합니다.

스케치 메뉴에서 Tools > Board를 선택한 뒤 목록에서 자신의 보드명을 찾아서 선택해 줍니다.( 가령, Arduino UNO)

 

7단계. 시리얼 포트 선택하기

'스케치에게 아두이노와 통신할 COM번호를 알려줍니다'

PC와 아두이노간의 프로그램 전송 및 데이타통신을 위해서는, 4단계에서 아두이노 통신용으로 등록된 COM번호(위 경우 COM9번)를 지정해줘야합니다.

스케치 메뉴에서 Tools > Serial Port를 선택한 뒤 연결된 아두이노 포트번호를 지정합니다.

연결된 시리얼 장치가 여러개일때 아두이노의 COM번호 식별이 안될경우, 아두이노를 케이블에서 제거할때 목록에서 사라지는 COM번호가 아두이노 할당 COM번호입니다. (4단계에서와 같이 장치관리자에서 포트 리스트를 확인해도 됩니다.)




8단계. Blink 예제 소스코드 불러오기

스케치 메뉴에서 File > Examples > 1.Basics > Blink를 선택하여 불러옵니다.
새로운 창이 뜨면서 아래와 같은 간단한 예제소스코드가 불러들여지게 됩니다.

아래의 소스는 아두이노 13번핀을 1초마다 ON, OFF를 반복하게 합니다.

/*
  Blink
  Turns on an LED on for one second, then off for one second, repeatedly.
 
  This example code is in the public domain.
 */

void setup() {               
  // initialize the digital pin as an output.
  // Pin 13 has an LED connected on most Arduino boards:
  pinMode(13, OUTPUT);    
}

void loop() {
  digitalWrite(13, HIGH);   // set the LED on
  delay(1000);              // wait for a second
  digitalWrite(13, LOW);    // set the LED off
  delay(1000);              // wait for a second
}


9단계. 컴파일 및 아두이노에 전송하기

 

 

verify & compile 하기 (생략 가능)
소스코드를 검증하고 컴파일하기 위해  재생버튼같이 생긴 verify & compile 버튼을 눌러줍니다.

Verify/Compile

참고로, 컴파일이란 사람이 이해가능한 소스코드를 기계어로 번역하는 과정입니다.
컴파일을 하기전에는 아두이노의 종류에따라 일부 설정을 달리하여 컴파일하므로 자신이 사용중인 아두이노 보드의 종류를 잘 설정(6단계 참고)해줘야합니다. 보드 종류가 틀리면,  컴파일 결과를 전송하거나 전송 후 작동시 문제가 될 수 있습니다.
앞으로 소스코드를 수정한 뒤 검증이 필요할때마다 이 버튼을 눌러주면 소스코드 검증이 이뤄지고 문제시 오류메시지를 확인할 수 있습니다.

컴파일 과정

컴파일이 완료되면 Done compiling 메시지가 뜨고 하단 메시지창에 프로그램 용량이 표시됩니다.

UNO가 약 30KB 프로그램 용량을 지원하므로 1/30 정도 크기입니다.

 

upload 하기
이제 컴파일된 정보를 아두이노로 전송하기위해 upoad 버튼을 눌러줍니다.  ctrl-U 단축키를 눌러도 됩니다.

Upload to I/O Board

참고로, verify & compile 버튼을 누르지 않고 곧바로 upload버튼을 눌러도 됩니다.
(이경우, 자동으로 컴파일 과정이 수행된 후 업로드가 이뤄지게 됩니다. 그리고, 소스코드 수정 후 곧바로 upload 버튼을 눌러주는 것 보다는 verify버튼을 눌러서 코드검증을 한 뒤에 문제가 없는경우 upload하는 것을 추천드립니다. )



10단계. LED Blink - 발광다이오드의 깜빡임 확인하기


upload버튼을 누르면 아두이노 시리얼통신 관련 Tx RX  LED들이 빠르게 점등되는것 을 볼 수 있습니다.
아두이노와 PC가 서로 정보를 주고(Tx, Transmit) 받기(Rx, Receive) 하면서 컴파일된 정보를 전달하는 과정입니다.
이과정은 UNO의 경우 5초도 안걸립니다.

소스코드에서 정의한대로 아두이노 보드를 보면 LED 하나가 1초 주기로 점등하는 것을 확인 할 수 있습니다.
UNO를 비롯한 최근의 모든 공식 아두이노 보드들은 디지탈 13번 핀에 LED와 저항이 달려있으므로 별도로 LED를 장착하지 않아도 간단한 LED 제어 테스트를 해볼 수 있습니다.

unoBlinking.swf
다운로드

UNO LED Blink 예제 실행 장면

11단계. 문제처리
 내용추가 예정


12단계. 참고사항

. LED사용할땐 꼭 저항과 함께 사용하세요
 직접 원하는 핀에 LED를 장착하여 작동하려면 저항과 함께 연결해 주시기 바랍니다.  [

]


+ Recent posts